Description
There is a rectangle in the xy-plane, with its lower left corner at (0,0) and its upper right corner at (W,H). Each of its sides is parallel to the x-axis or y-axis. Initially, the whole region within the rectangle is painted white.
Snuke plotted N points into the rectangle. The coordinate of the i-th (1≤i≤N) point was (xi,yi).
Then, for each 1≤i≤N, he will paint one of the following four regions black:
- the region satisfying x<xi within the rectangle
- the region satisfying x>xi within the rectangle
- the region satisfying y<yi within the rectangle
- the region satisfying y>yi within the rectangle
Find the longest possible perimeter of the white region of a rectangular shape within the rectangle after he finishes painting.
题意:给定一个$W\times H$的二维平面,初始均为白色,有$n$个关键点$(x_{i},y_{i})$,对于每一个关键点选择一个方向,并将该方向上的所有网格涂成黑色。易得操作后白色部分一定是一个矩形,请最大化矩形周长。
分析:
观察可以得到一个性质,答案矩形一定会经过直线$x=\frac{W}{2}$或$y=\frac{H}{2}$。两种情况可以用相同的方式处理出答案。
将坐标离散化后,枚举矩形的上下边界,可以直接计算出矩形的左右边界。考虑用线段树进行优化。左右各开一个单调栈,在维护单调栈时在线段树上进行区间加减即可。(其实画图比较方便理解。
1 #include2 #include 3 #include 4 #define LL long long 5 #define lc(x) x<<1 6 #define rc(x) x<<1|1 7 using namespace std; 8 const int N=3e5+5; 9 int w,h,n,ans,L,R;10 int mx[N*4],tag[N*4];11 struct node{ int x,y;node(int _x=0,int _y=0):x(_x),y(_y){};}p[N],a[N],b[N]; 12 int read()13 {14 int x=0,f=1;char c=getchar();15 while(c<'0'||c>'9'){ if(c=='-')f=-1;c=getchar();}16 while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}17 return x*f;18 }19 void modify(int x,int l,int r,int v)20 {21 if(L<=l&&r<=R){mx[x]+=v;tag[x]+=v;return;}22 int mid=(l+r)>>1;23 if(L<=mid)modify(lc(x),l,mid,v);24 if(R>mid)modify(rc(x),mid+1,r,v);25 mx[x]=max(mx[lc(x)],mx[rc(x)])+tag[x];26 }27 bool cmp(node a,node b){ return a.x p[i].y)50 {51 L=b[r].x;R=nxt;nxt=b[r].x-1;52 modify(1,1,n,p[i].y-b[r].y);r--;53 }54 if(nxt!=i-1)b[++r]=node(nxt+1,p[i].y);55 }56 a[++l]=node(i,0);b[++r]=node(i,h);57 L=i;R=i;modify(1,1,n,h-p[i].x);58 ans=max(ans,mx[1]+p[i+1].x);59 }60 }61 int main()62 {63 w=read();h=read();n=read();64 for(int i=1;i<=n;i++)p[i].x=read(),p[i].y=read();65 p[++n]=node(0,0);p[++n]=node(w,h);work();66 for(int i=1;i<=n;i++)swap(p[i].x,p[i].y);67 swap(w,h);work();68 printf("%d",ans*2);69 return 0;70 }